Files
ZSNES/zsnes/src/chips/dsp4emu.c

2286 lines
56 KiB
C

/*
Copyright (C) 1997-2005 ZSNES Team ( zsKnight, _Demo_, pagefault, Nach )
http://www.zsnes.com
http://sourceforge.net/projects/zsnes
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later
version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <string.h>
typedef unsigned char bool8;
typedef unsigned char uint8;
typedef unsigned short uint16;
typedef unsigned int uint32;
typedef char int8;
typedef short int16;
typedef long int32;
#define FALSE 0
#define TRUE 1
/*
Due recognition and credit are given on Overload's DSP website.
Thank those contributors for their hard work on this chip.
Fixed-point math reminder:
[sign, integer, fraction]
1.15.00 * 1.15.00 = 2.30.00 -> 1.30.00 (DSP) -> 1.31.00 (LSB is '0')
1.15.00 * 1.00.15 = 2.15.15 -> 1.15.15 (DSP) -> 1.15.16 (LSB is '0')
*/
#define READ_WORD(s) (*(uint16 *) (s))
#define READ_DWORD(s) (*(uint32 *) (s))
#define WRITE_WORD(s, d) (*(uint16 *) (s)) = (d)
#define WRITE_DWORD(s, d) (*(uint32 *) (s)) = (d)
struct
{
bool8 waiting4command;
bool8 half_command;
uint16 command;
uint32 in_count;
uint32 in_index;
uint32 out_count;
uint32 out_index;
uint8 parameters[512];
uint8 output[512];
} DSP4;
//Todo: get all of this into a struct for easy save stating
// op control
int8 DSP4_Logic; // controls op flow
// projection format
int16 lcv; // loop-control variable
int16 distance; // z-position into virtual world
int16 raster; // current raster line
int16 segments; // number of raster lines drawn
// 1.15.16 or 1.15.0 [sign, integer, fraction]
int32 world_x; // line of x-projection in world
int32 world_y; // line of y-projection in world
int32 world_dx; // projection line x-delta
int32 world_dy; // projection line y-delta
int16 world_ddx; // x-delta increment
int16 world_ddy; // y-delta increment
int32 world_xenv; // world x-shaping factor
int16 world_yofs; // world y-vertical scroll
int16 view_x1; // current viewer-x
int16 view_y1; // current viewer-y
int16 view_x2; // future viewer-x
int16 view_y2; // future viewer-y
int16 view_dx; // view x-delta factor
int16 view_dy; // view y-delta factor
int16 view_xofs1; // current viewer x-vertical scroll
int16 view_yofs1; // current viewer y-vertical scroll
int16 view_xofs2; // future viewer x-vertical scroll
int16 view_yofs2; // future viewer y-vertical scroll
int16 view_yofsenv; // y-scroll shaping factor
// drawing area
int16 viewport_cx; // x-center of viewport window
int16 viewport_cy; // y-center of render window
int16 viewport_left; // x-left of viewport
int16 viewport_right; // x-right of viewport
int16 viewport_top; // y-top of viewport
int16 viewport_bottom; // y-bottom of viewport
// sprite structure
int16 sprite_x; // projected x-pos of sprite
int16 sprite_y; // projected y-pos of sprite
int16 sprite_attr; // obj attributes
bool8 sprite_size; // sprite size: 8x8 or 16x16
int16 sprite_clipy; // visible line to clip pixels off
int16 sprite_count;
// generic projection variables designed for
// two solid polygons + two polygon sides
int16 poly_clipLf[2][2]; // left clip boundary
int16 poly_clipRt[2][2]; // right clip boundary
int16 poly_ptr[2][2]; // HDMA structure pointers
int16 poly_raster[2][2]; // current raster line below horizon
int16 poly_top[2][2]; // top clip boundary
int16 poly_bottom[2][2]; // bottom clip boundary
int16 poly_cx[2][2]; // center for left/right points
int16 poly_start[2]; // current projection points
int16 poly_plane[2]; // previous z-plane distance
// OAM
int16 OAM_attr[16]; // OAM (size,MSB) data
int16 OAM_index; // index into OAM table
int16 OAM_bits; // offset into OAM table
int16 OAM_RowMax; // maximum number of tiles per 8 aligned pixels (row)
int16 OAM_Row[32]; // current number of tiles per row
//////////////////////////////////////////////////////////////
// input protocol
static int16 DSP4_READ_WORD()
{
int16 out;
out = READ_WORD(DSP4.parameters + DSP4.in_index);
DSP4.in_index += 2;
return out;
}
static int32 DSP4_READ_DWORD()
{
int32 out;
out = READ_DWORD(DSP4.parameters + DSP4.in_index);
DSP4.in_index += 4;
return out;
}
//////////////////////////////////////////////////////////////
// output protocol
#define DSP4_CLEAR_OUT() \
{ DSP4.out_count = 0; DSP4.out_index = 0; }
#define DSP4_WRITE_BYTE( d ) \
{ WRITE_WORD( DSP4.output + DSP4.out_count, ( d ) ); DSP4.out_count++; }
#define DSP4_WRITE_WORD( d ) \
{ WRITE_WORD( DSP4.output + DSP4.out_count, ( d ) ); DSP4.out_count += 2; }
#ifdef PRINT_OP
#define DSP4_WRITE_DEBUG( x, d ) \
WRITE_WORD( nop + x, d );
#endif
#ifdef DEBUG_DSP
#define DSP4_WRITE_DEBUG( x, d ) \
WRITE_WORD( nop + x, d );
#endif
//////////////////////////////////////////////////////////////
// used to wait for dsp i/o
#define DSP4_WAIT( x ) \
DSP4.in_index = 0; DSP4_Logic = x; return;
//////////////////////////////////////////////////////////////
// 1.7.8 -> 1.15.16
#define SEX78( a ) ( ( (int32) ( (int16) (a) ) ) << 8 )
// 1.15.0 -> 1.15.16
#define SEX16( a ) ( ( (int32) ( (int16) (a) ) ) << 16 )
#ifdef PRINT_OP
#define U16( a ) ( (uint16) ( a ) )
#endif
#ifdef DEBUG_DSP
#define U16( a ) ( (uint16) ( a ) )
#endif
//////////////////////////////////////////////////////////////
// Attention: This lookup table is not verified
const uint16 div_lut[64] = { 0x0000, 0x8000, 0x4000, 0x2aaa, 0x2000, 0x1999, 0x1555, 0x1249, 0x1000, 0x0e38,
0x0ccc, 0x0ba2, 0x0aaa, 0x09d8, 0x0924, 0x0888, 0x0800, 0x0787, 0x071c, 0x06bc,
0x0666, 0x0618, 0x05d1, 0x0590, 0x0555, 0x051e, 0x04ec, 0x04bd, 0x0492, 0x0469,
0x0444, 0x0421, 0x0400, 0x03e0, 0x03c3, 0x03a8, 0x038e, 0x0375, 0x035e, 0x0348,
0x0333, 0x031f, 0x030c, 0x02fa, 0x02e8, 0x02d8, 0x02c8, 0x02b9, 0x02aa, 0x029c,
0x028f, 0x0282, 0x0276, 0x026a, 0x025e, 0x0253, 0x0249, 0x023e, 0x0234, 0x022b,
0x0222, 0x0219, 0x0210, 0x0208, };
int16 DSP4_Inverse(int16 value)
{
// saturate bounds
if (value < 0)
{
value = 0;
}
if (value > 63)
{
value = 63;
}
return div_lut[value];
}
//////////////////////////////////////////////////////////////
// Prototype
void DSP4_OP0B(bool8 *draw, int16 sp_x, int16 sp_y, int16 sp_attr, bool8 size, bool8 stop);
//////////////////////////////////////////////////////////////
// OP00
void DSP4_Multiply(int16 Multiplicand, int16 Multiplier, int32 *Product)
{
*Product = (Multiplicand * Multiplier << 1) >> 1;
}
//////////////////////////////////////////////////////////////
void DSP4_OP01()
{
DSP4.waiting4command = FALSE;
// op flow control
switch (DSP4_Logic)
{
case 1:
goto resume1; break;
case 2:
goto resume2; break;
case 3:
goto resume3; break;
}
////////////////////////////////////////////////////
// process initial inputs
// sort inputs
world_y = DSP4_READ_DWORD();
poly_bottom[0][0] = DSP4_READ_WORD();
poly_top[0][0] = DSP4_READ_WORD();
poly_cx[1][0] = DSP4_READ_WORD();
viewport_bottom = DSP4_READ_WORD();
world_x = DSP4_READ_DWORD();
poly_cx[0][0] = DSP4_READ_WORD();
poly_ptr[0][0] = DSP4_READ_WORD();
world_yofs = DSP4_READ_WORD();
world_dy = DSP4_READ_DWORD();
world_dx = DSP4_READ_DWORD();
distance = DSP4_READ_WORD();
DSP4_READ_WORD(); // 0x0000
world_xenv = DSP4_READ_DWORD();
world_ddy = DSP4_READ_WORD();
world_ddx = DSP4_READ_WORD();
view_yofsenv = DSP4_READ_WORD();
// initial (x,y,offset) at starting raster line
view_x1 = (world_x + world_xenv) >> 16;
view_y1 = world_y >> 16;
view_xofs1 = world_x >> 16;
view_yofs1 = world_yofs;
// first raster line
poly_raster[0][0] = poly_bottom[0][0];
do
{
////////////////////////////////////////////////////
// process one iteration of projection
// perspective projection of world (x,y,scroll) points
// based on the current projection lines
view_x2 = ((world_x + world_xenv) >> 16) * distance >> 15;
view_y2 = (world_y >> 16) * distance >> 15;
view_xofs2 = view_x2;
view_yofs2 = (world_yofs * distance >> 15) + poly_bottom[0][0] - view_y2;
// 1. World x-location before transformation
// 2. Viewer x-position at the next
// 3. World y-location before perspective projection
// 4. Viewer y-position below the horizon
// 5. Number of raster lines drawn in this iteration
DSP4_CLEAR_OUT();
DSP4_WRITE_WORD((world_x + world_xenv) >> 16);
DSP4_WRITE_WORD(view_x2);
DSP4_WRITE_WORD(world_y >> 16);
DSP4_WRITE_WORD(view_y2);
//////////////////////////////////////////////////////
// SR = 0x00
// determine # of raster lines used
segments = poly_raster[0][0] - view_y2;
// prevent overdraw
if (view_y2 >= poly_raster[0][0])
segments = 0;
else
poly_raster[0][0] = view_y2;
// don't draw outside the window
if (view_y2 < poly_top[0][0])
{
segments = 0;
// flush remaining raster lines
if (view_y1 >= poly_top[0][0])
segments = view_y1 - poly_top[0][0];
}
// SR = 0x80
DSP4_WRITE_WORD(segments);
//////////////////////////////////////////////////////
// scan next command if no SR check needed
if (segments)
{
int32 px_dx, py_dy;
int32 x_scroll, y_scroll;
// SR = 0x00
// linear interpolation (lerp) between projected points
px_dx = (view_xofs2 - view_xofs1) * DSP4_Inverse(segments) << 1;
py_dy = (view_yofs2 - view_yofs1) * DSP4_Inverse(segments) << 1;
// starting step values
x_scroll = SEX16(poly_cx[0][0] + view_xofs1);
y_scroll = SEX16(-viewport_bottom + view_yofs1 + view_yofsenv + poly_cx[1][0] - world_yofs);
// SR = 0x80
// rasterize line
for (lcv = 0; lcv < segments; lcv++)
{
// 1. HDMA memory pointer
// 2. vertical scroll offset ($210E)
// 3. horizontal scroll offset ($210D)
DSP4_WRITE_WORD(poly_ptr[0][0]);
DSP4_WRITE_WORD((y_scroll + 0x8000) >> 16);
DSP4_WRITE_WORD((x_scroll + 0x8000) >> 16);
// update memory address
poly_ptr[0][0] -= 4;
// update screen values
x_scroll += px_dx;
y_scroll += py_dy;
}
}
////////////////////////////////////////////////////
// Post-update
// update new viewer (x,y,scroll) to last raster line drawn
view_x1 = view_x2;
view_y1 = view_y2;
view_xofs1 = view_xofs2;
view_yofs1 = view_yofs2;
// add deltas for projection lines
world_dx += SEX78(world_ddx);
world_dy += SEX78(world_ddy);
// update projection lines
world_x += (world_dx + world_xenv);
world_y += world_dy;
////////////////////////////////////////////////////
// command check
// scan next command
DSP4.in_count = 2;
DSP4_WAIT(1) resume1 :
// check for termination
distance = DSP4_READ_WORD();
if (distance == -0x8000)
break;
if ((uint16) distance == 0x8001)
{
/*
(code)
308000 W: 01
308001 W: 80
308000 W: E4
308001 W: 0B
308000 W: 5C
308001 W: A0
308000 W: 38
308001 W: FD
(normal)
308000 W: 07
308001 W: 0B
308000 W: 00
308001 W: 00
308000 W: 00
308001 W: 01
308000 W: 00
308001 W: 00
*/
DSP4.in_count = 6;
DSP4_WAIT(2) resume2 : distance = DSP4_READ_WORD();
DSP4_READ_WORD();
DSP4_READ_WORD();
DSP4.in_count = 2;
DSP4_WAIT(1)
}
// already have 2 bytes read
DSP4.in_count = 6;
DSP4_WAIT(3) resume3 :
// inspect inputs
world_ddy = DSP4_READ_WORD();
world_ddx = DSP4_READ_WORD();
view_yofsenv = DSP4_READ_WORD();
// no envelope here
world_xenv = 0;
}
while (1);
// terminate op
DSP4.waiting4command = TRUE;
}
//////////////////////////////////////////////////////////////
void DSP4_OP03()
{
int16 i;
OAM_RowMax = 33;
for (i = 0; i < 32; i++)
{
OAM_Row[i] = 0;
}
}
//////////////////////////////////////////////////////////////
void DSP4_OP05()
{
int16 lcv;
OAM_index = 0;
OAM_bits = 0;
for (lcv = 0; lcv < 16; lcv++)
{
OAM_attr[lcv] = 0;
}
sprite_count = 0;
}
//////////////////////////////////////////////////////////////
void DSP4_OP06()
{
int16 lcv;
DSP4_CLEAR_OUT();
for (lcv = 0; lcv < 16; lcv++)
{
DSP4_WRITE_WORD(OAM_attr[lcv]);
}
}
//////////////////////////////////////////////////////////////
void DSP4_OP07()
{
DSP4.waiting4command = FALSE;
// op flow control
switch (DSP4_Logic)
{
case 1:
goto resume1; break;
case 2:
goto resume2; break;
}
////////////////////////////////////////////////////
// sort inputs
world_y = DSP4_READ_DWORD();
poly_bottom[0][0] = DSP4_READ_WORD();
poly_top[0][0] = DSP4_READ_WORD();
poly_cx[1][0] = DSP4_READ_WORD();
viewport_bottom = DSP4_READ_WORD();
world_x = DSP4_READ_DWORD();
poly_cx[0][0] = DSP4_READ_WORD();
poly_ptr[0][0] = DSP4_READ_WORD();
world_yofs = DSP4_READ_WORD();
distance = DSP4_READ_WORD();
view_y2 = DSP4_READ_WORD();
view_dy = DSP4_READ_WORD() * distance >> 15;
view_x2 = DSP4_READ_WORD();
view_dx = DSP4_READ_WORD() * distance >> 15;
view_yofsenv = DSP4_READ_WORD();
// initial (x,y,offset) at starting raster line
view_x1 = world_x >> 16;
view_y1 = world_y >> 16;
view_xofs1 = view_x1;
view_yofs1 = world_yofs;
// first raster line
poly_raster[0][0] = poly_bottom[0][0];
do
{
////////////////////////////////////////////////////
// process one iteration of projection
// add shaping
view_x2 += view_dx;
view_y2 += view_dy;
// vertical scroll calculation
view_xofs2 = view_x2;
view_yofs2 = (world_yofs * distance >> 15) + poly_bottom[0][0] - view_y2;
// 1. Viewer x-position at the next
// 2. Viewer y-position below the horizon
// 3. Number of raster lines drawn in this iteration
DSP4_CLEAR_OUT();
DSP4_WRITE_WORD(view_x2);
DSP4_WRITE_WORD(view_y2);
//////////////////////////////////////////////////////
// SR = 0x00
// determine # of raster lines used
segments = view_y1 - view_y2;
// prevent overdraw
if (view_y2 >= poly_raster[0][0])
segments = 0;
else
poly_raster[0][0] = view_y2;
// don't draw outside the window
if (view_y2 < poly_top[0][0])
{
segments = 0;
// flush remaining raster lines
if (view_y1 >= poly_top[0][0])
segments = view_y1 - poly_top[0][0];
}
// SR = 0x80
DSP4_WRITE_WORD(segments);
//////////////////////////////////////////////////////
// scan next command if no SR check needed
if (segments)
{
int32 px_dx, py_dy;
int32 x_scroll, y_scroll;
// SR = 0x00
// linear interpolation (lerp) between projected points
px_dx = (view_xofs2 - view_xofs1) * DSP4_Inverse(segments) << 1;
py_dy = (view_yofs2 - view_yofs1) * DSP4_Inverse(segments) << 1;
// starting step values
x_scroll = SEX16(poly_cx[0][0] + view_xofs1);
y_scroll = SEX16(-viewport_bottom + view_yofs1 + view_yofsenv + poly_cx[1][0] - world_yofs);
// SR = 0x80
// rasterize line
for (lcv = 0; lcv < segments; lcv++)
{
// 1. HDMA memory pointer
// 2. vertical scroll offset ($210E)
// 3. horizontal scroll offset ($210D)
DSP4_WRITE_WORD(poly_ptr[0][0]);
DSP4_WRITE_WORD((y_scroll + 0x8000) >> 16);
DSP4_WRITE_WORD((x_scroll + 0x8000) >> 16);
// update memory address
poly_ptr[0][0] -= 4;
// update screen values
x_scroll += px_dx;
y_scroll += py_dy;
}
}
/////////////////////////////////////////////////////
// Post-update
// update new viewer (x,y,scroll) to last raster line drawn
view_x1 = view_x2;
view_y1 = view_y2;
view_xofs1 = view_xofs2;
view_yofs1 = view_yofs2;
////////////////////////////////////////////////////
// command check
// scan next command
DSP4.in_count = 2;
DSP4_WAIT(1) resume1 :
// check for opcode termination
distance = DSP4_READ_WORD();
if (distance == -0x8000)
break;
// already have 2 bytes in queue
DSP4.in_count = 10;
DSP4_WAIT(2) resume2 :
// inspect inputs
view_y2 = DSP4_READ_WORD();
view_dy = DSP4_READ_WORD() * distance >> 15;
view_x2 = DSP4_READ_WORD();
view_dx = DSP4_READ_WORD() * distance >> 15;
view_yofsenv = DSP4_READ_WORD();
}
while (1);
DSP4.waiting4command = TRUE;
}
//////////////////////////////////////////////////////////////
void DSP4_OP08()
{
int16 win_left, win_right;
int16 view_x[2], view_y[2];
int16 envelope[2][2];
DSP4.waiting4command = FALSE;
// op flow control
switch (DSP4_Logic)
{
case 1:
goto resume1; break;
case 2:
goto resume2; break;
}
////////////////////////////////////////////////////
// process initial inputs for two polygons
// clip values
poly_clipRt[0][0] = DSP4_READ_WORD();
poly_clipRt[0][1] = DSP4_READ_WORD();
poly_clipRt[1][0] = DSP4_READ_WORD();
poly_clipRt[1][1] = DSP4_READ_WORD();
poly_clipLf[0][0] = DSP4_READ_WORD();
poly_clipLf[0][1] = DSP4_READ_WORD();
poly_clipLf[1][0] = DSP4_READ_WORD();
poly_clipLf[1][1] = DSP4_READ_WORD();
// unknown (constant) (ex. 1P/2P = $00A6, $00A6, $00A6, $00A6)
DSP4_READ_WORD();
DSP4_READ_WORD();
DSP4_READ_WORD();
DSP4_READ_WORD();
// unknown (constant) (ex. 1P/2P = $00A5, $00A5, $00A7, $00A7)
DSP4_READ_WORD();
DSP4_READ_WORD();
DSP4_READ_WORD();
DSP4_READ_WORD();
// polygon centering (left,right)
poly_cx[0][0] = DSP4_READ_WORD();
poly_cx[0][1] = DSP4_READ_WORD();
poly_cx[1][0] = DSP4_READ_WORD();
poly_cx[1][1] = DSP4_READ_WORD();
// HDMA pointer locations
poly_ptr[0][0] = DSP4_READ_WORD();
poly_ptr[0][1] = DSP4_READ_WORD();
poly_ptr[1][0] = DSP4_READ_WORD();
poly_ptr[1][1] = DSP4_READ_WORD();
// starting raster line below the horizon
poly_bottom[0][0] = DSP4_READ_WORD();
poly_bottom[0][1] = DSP4_READ_WORD();
poly_bottom[1][0] = DSP4_READ_WORD();
poly_bottom[1][1] = DSP4_READ_WORD();
// top boundary line to clip
poly_top[0][0] = DSP4_READ_WORD();
poly_top[0][1] = DSP4_READ_WORD();
poly_top[1][0] = DSP4_READ_WORD();
poly_top[1][1] = DSP4_READ_WORD();
// unknown
// (ex. 1P = $2FC8, $0034, $FF5C, $0035)
//
// (ex. 2P = $3178, $0034, $FFCC, $0035)
// (ex. 2P = $2FC8, $0034, $FFCC, $0035)
DSP4_READ_WORD();
DSP4_READ_WORD();
DSP4_READ_WORD();
DSP4_READ_WORD();
// look at guidelines for both polygon shapes
distance = DSP4_READ_WORD();
view_x[0] = DSP4_READ_WORD();
view_y[0] = DSP4_READ_WORD();
view_x[1] = DSP4_READ_WORD();
view_y[1] = DSP4_READ_WORD();
// envelope shaping guidelines (one frame only)
envelope[0][0] = DSP4_READ_WORD();
envelope[0][1] = DSP4_READ_WORD();
envelope[1][0] = DSP4_READ_WORD();
envelope[1][1] = DSP4_READ_WORD();
// starting base values to project from
poly_start[0] = view_x[0];
poly_start[1] = view_x[1];
// starting raster lines to begin drawing
poly_raster[0][0] = view_y[0];
poly_raster[0][1] = view_y[0];
poly_raster[1][0] = view_y[1];
poly_raster[1][1] = view_y[1];
// starting distances
poly_plane[0] = distance;
poly_plane[1] = distance;
// SR = 0x00
// re-center coordinates
win_left = poly_cx[0][0] - view_x[0] + envelope[0][0];
win_right = poly_cx[0][1] - view_x[0] + envelope[0][1];
// saturate offscreen data for polygon #1
if (win_left < poly_clipLf[0][0])
{
win_left = poly_clipLf[0][0];
}
if (win_left > poly_clipRt[0][0])
{
win_left = poly_clipRt[0][0];
}
if (win_right < poly_clipLf[0][1])
{
win_right = poly_clipLf[0][1];
}
if (win_right > poly_clipRt[0][1])
{
win_right = poly_clipRt[0][1];
}
// SR = 0x80
// initial output for polygon #1
DSP4_CLEAR_OUT();
DSP4_WRITE_BYTE(win_left & 0xff);
DSP4_WRITE_BYTE(win_right & 0xff);
do
{
int16 polygon;
////////////////////////////////////////////////////
// command check
// scan next command
DSP4.in_count = 2;
DSP4_WAIT(1) resume1 :
// terminate op
distance = DSP4_READ_WORD();
if (distance == -0x8000)
break;
// already have 2 bytes in queue
DSP4.in_count = 16;
DSP4_WAIT(2) resume2 :
// look at guidelines for both polygon shapes
view_x[0] = DSP4_READ_WORD();
view_y[0] = DSP4_READ_WORD();
view_x[1] = DSP4_READ_WORD();
view_y[1] = DSP4_READ_WORD();
// envelope shaping guidelines (one frame only)
envelope[0][0] = DSP4_READ_WORD();
envelope[0][1] = DSP4_READ_WORD();
envelope[1][0] = DSP4_READ_WORD();
envelope[1][1] = DSP4_READ_WORD();
////////////////////////////////////////////////////
// projection begins
// init
DSP4_CLEAR_OUT();
//////////////////////////////////////////////
// solid polygon renderer - 2 shapes
for (polygon = 0; polygon < 2; polygon++)
{
int32 left_inc, right_inc;
int16 x1_final, x2_final;
int16 env[2][2];
// SR = 0x00
// # raster lines to draw
segments = poly_raster[polygon][0] - view_y[polygon];
// prevent overdraw
if (segments > 0)
{
// bump drawing cursor
poly_raster[polygon][0] = view_y[polygon];
poly_raster[polygon][1] = view_y[polygon];
}
else
segments = 0;
// don't draw outside the window
if (view_y[polygon] < poly_top[polygon][0])
{
segments = 0;
// flush remaining raster lines
if (view_y[polygon] >= poly_top[polygon][0])
segments = view_y[polygon] - poly_top[polygon][0];
}
// SR = 0x80
// tell user how many raster structures to read in
DSP4_WRITE_WORD(segments);
/////////////////////////////////////////////////////
// scan next command if no SR check needed
if (segments)
{
int32 win_left, win_right;
///////////////////////////////////////////////
// left side of polygon
// perspective correction on additional shaping parameters
env[0][0] = envelope[polygon][0] * poly_plane[polygon] >> 15;
env[0][1] = envelope[polygon][0] * distance >> 15;
// project new shapes (left side)
x1_final = view_x[polygon] + env[0][0];
x2_final = poly_start[polygon] + env[0][1];
// interpolate between projected points with shaping
left_inc = (x2_final - x1_final) * DSP4_Inverse(segments) << 1;
if (segments == 1)
left_inc = -left_inc;
///////////////////////////////////////////////
// right side of polygon
// perspective correction on additional shaping parameters
env[1][0] = envelope[polygon][1] * poly_plane[polygon] >> 15;
env[1][1] = envelope[polygon][1] * distance >> 15;
// project new shapes (right side)
x1_final = view_x[polygon] + env[1][0];
x2_final = poly_start[polygon] + env[1][1];
// interpolate between projected points with shaping
right_inc = (x2_final - x1_final) * DSP4_Inverse(segments) << 1;
if (segments == 1)
right_inc = -right_inc;
///////////////////////////////////////////////
// update each point on the line
win_left = SEX16(poly_cx[polygon][0] - poly_start[polygon] + env[0][0]);
win_right = SEX16(poly_cx[polygon][1] - poly_start[polygon] + env[1][0]);
// update distance drawn into world
poly_plane[polygon] = distance;
// rasterize line
for (lcv = 0; lcv < segments; lcv++)
{
int16 x_left, x_right;
// project new coordinates
win_left += left_inc;
win_right += right_inc;
// grab integer portion, drop fraction (no rounding)
x_left = win_left >> 16;
x_right = win_right >> 16;
// saturate offscreen data
if (x_left < poly_clipLf[polygon][0])
x_left = poly_clipLf[polygon][0];
if (x_left > poly_clipRt[polygon][0])
x_left = poly_clipRt[polygon][0];
if (x_right < poly_clipLf[polygon][1])
x_right = poly_clipLf[polygon][1];
if (x_right > poly_clipRt[polygon][1])
x_right = poly_clipRt[polygon][1];
// 1. HDMA memory pointer
// 2. Left window position ($2126/$2128)
// 3. Right window position ($2127/$2129)
DSP4_WRITE_WORD(poly_ptr[polygon][0]);
DSP4_WRITE_BYTE(x_left & 0xff);
DSP4_WRITE_BYTE(x_right & 0xff);
// update memory pointers
poly_ptr[polygon][0] -= 4;
poly_ptr[polygon][1] -= 4;
} // end rasterize line
}
////////////////////////////////////////////////
// Post-update
// new projection spot to continue rasterizing from
poly_start[polygon] = view_x[polygon];
} // end polygon rasterizer
}
while (1);
// unknown output
DSP4_CLEAR_OUT();
DSP4_WRITE_WORD(0);
DSP4.waiting4command = TRUE;
}
//////////////////////////////////////////////////////////////
void DSP4_OP09()
{
DSP4.waiting4command = FALSE;
// op flow control
switch (DSP4_Logic)
{
case 1:
goto resume1; break;
case 2:
goto resume2; break;
case 3:
goto resume3; break;
case 4:
goto resume4; break;
case 5:
goto resume5; break;
case 6:
goto resume6; break;
}
////////////////////////////////////////////////////
// process initial inputs
// grab screen information
viewport_cx = DSP4_READ_WORD();
viewport_cy = DSP4_READ_WORD();
DSP4_READ_WORD(); // 0x0000
viewport_left = DSP4_READ_WORD();
viewport_right = DSP4_READ_WORD();
viewport_top = DSP4_READ_WORD();
viewport_bottom = DSP4_READ_WORD();
// starting raster line below the horizon
poly_bottom[0][0] = viewport_bottom - viewport_cy;
poly_raster[0][0] = 0x100;
do
{
////////////////////////////////////////////////////
// check for new sprites
DSP4.in_count = 4;
DSP4_WAIT(1) resume1 :
////////////////////////////////////////////////
// raster overdraw check
raster = DSP4_READ_WORD();
// continue updating the raster line where overdraw begins
if (raster < poly_raster[0][0])
{
sprite_clipy = viewport_bottom - (poly_bottom[0][0] - raster);
poly_raster[0][0] = raster;
}
/////////////////////////////////////////////////
// identify sprite
// op termination
distance = DSP4_READ_WORD();
if (distance == -0x8000)
goto terminate;
// no sprite
if (distance == 0x0000)
{
continue;
}
////////////////////////////////////////////////////
// process projection information
// vehicle sprite
if ((uint16) distance == 0x9000)
{
int16 car_left, car_right, car_back;
int16 impact_left, impact_back;
int16 world_spx, world_spy;
int16 view_spx, view_spy;
uint16 energy;
// we already have 4 bytes we want
DSP4.in_count = 14;
DSP4_WAIT(2) resume2 :
// filter inputs
energy = DSP4_READ_WORD();
impact_back = DSP4_READ_WORD();
car_back = DSP4_READ_WORD();
impact_left = DSP4_READ_WORD();
car_left = DSP4_READ_WORD();
distance = DSP4_READ_WORD();
car_right = DSP4_READ_WORD();
// calculate car's world (x,y) values
world_spx = car_right - car_left;
world_spy = car_back;
// add in collision vector [needs bit-twiddling]
world_spx -= energy * (impact_left - car_left) >> 16;
world_spy -= energy * (car_back - impact_back) >> 16;
// perspective correction for world (x,y)
view_spx = world_spx * distance >> 15;
view_spy = world_spy * distance >> 15;
// convert to screen values
sprite_x = viewport_cx + view_spx;
sprite_y = viewport_bottom - (poly_bottom[0][0] - view_spy);
// make the car's (x)-coordinate available
DSP4_CLEAR_OUT();
DSP4_WRITE_WORD(world_spx);
// grab a few remaining vehicle values
DSP4.in_count = 4;
DSP4_WAIT(3) resume3 :
// add vertical lift factor
sprite_y += DSP4_READ_WORD();
}
// terrain sprite
else
{
int16 world_spx, world_spy;
int16 view_spx, view_spy;
// we already have 4 bytes we want
DSP4.in_count = 10;
DSP4_WAIT(4) resume4 :
// sort loop inputs
poly_cx[0][0] = DSP4_READ_WORD();
poly_raster[0][1] = DSP4_READ_WORD();
world_spx = DSP4_READ_WORD();
world_spy = DSP4_READ_WORD();
// compute base raster line from the bottom
segments = poly_bottom[0][0] - raster;
// perspective correction for world (x,y)
view_spx = world_spx * distance >> 15;
view_spy = world_spy * distance >> 15;
// convert to screen values
sprite_x = viewport_cx + view_spx - poly_cx[0][0];
sprite_y = viewport_bottom - segments + view_spy;
}
// default sprite size: 16x16
sprite_size = 1;
sprite_attr = DSP4_READ_WORD();
////////////////////////////////////////////////////
// convert tile data to SNES OAM format
do
{
uint16 header;
int16 sp_x, sp_y, sp_attr, sp_dattr;
int16 sp_dx, sp_dy;
int16 pixels;
bool8 draw = TRUE;
DSP4.in_count = 2;
DSP4_WAIT(5) resume5 :
// opcode termination
raster = DSP4_READ_WORD();
if (raster == -0x8000)
goto terminate;
// stop code
if (raster == 0x0000 && !sprite_size)
break;
// toggle sprite size
if (raster == 0x0000)
{
sprite_size = !sprite_size;
continue;
}
// check for valid sprite header
header = raster;
header >>= 8;
if (header != 0x20 &&
header != 0x40 &&
header != 0x60 &&
header != 0xa0 &&
header != 0xc0 &&
header != 0xe0)
break;
// read in rest of sprite data
DSP4.in_count = 4;
DSP4_WAIT(6) resume6 :
/////////////////////////////////////
// process tile data
// sprite deltas
sp_dattr = raster;
sp_dy = DSP4_READ_WORD();
sp_dx = DSP4_READ_WORD();
// update coordinates to screen space
sp_x = sprite_x + sp_dx;
sp_y = sprite_y + sp_dy;
// update sprite nametable/attribute information
sp_attr = sprite_attr + sp_dattr;
// allow partially visibile tiles
pixels = sprite_size ? 15 : 7;
DSP4_CLEAR_OUT();
// transparent tile to clip off parts of a sprite (overdraw)
if (sprite_clipy - pixels <= sp_y &&
sp_y <= sprite_clipy &&
sp_x >= viewport_left - pixels &&
sp_x <= viewport_right &&
sprite_clipy >= viewport_top - pixels &&
sprite_clipy <= viewport_bottom)
{
DSP4_OP0B(&draw, sp_x, sprite_clipy, 0x00EE, sprite_size, 0);
}
// normal sprite tile
if (sp_x >= viewport_left - pixels &&
sp_x <= viewport_right &&
sp_y >= viewport_top - pixels &&
sp_y <= viewport_bottom &&
sp_y <= sprite_clipy)
{
DSP4_OP0B(&draw, sp_x, sp_y, sp_attr, sprite_size, 0);
}
// no following OAM data
DSP4_OP0B(&draw, 0, 0x0100, 0, 0, 1);
}
while (1);
}
while (1);
terminate : DSP4.waiting4command = TRUE;
}
//////////////////////////////////////////////////////////////
const uint16 OP0A_Values[16] = { 0x0000, 0x0030, 0x0060, 0x0090, 0x00c0, 0x00f0, 0x0120, 0x0150, 0xfe80,
0xfeb0, 0xfee0, 0xff10, 0xff40, 0xff70, 0xffa0, 0xffd0 };
void DSP4_OP0A(int16 n2, int16 *o1, int16 *o2, int16 *o3, int16 *o4)
{
*o4 = OP0A_Values[(n2 & 0x000f)];
*o3 = OP0A_Values[(n2 & 0x00f0) >> 4];
*o2 = OP0A_Values[(n2 & 0x0f00) >> 8];
*o1 = OP0A_Values[(n2 & 0xf000) >> 12];
}
//////////////////////////////////////////////////////////////
void DSP4_OP0B(bool8 *draw, int16 sp_x, int16 sp_y, int16 sp_attr, bool8 size, bool8 stop)
{
int16 Row1, Row2;
// SR = 0x00
// align to nearest 8-pixel row
Row1 = (sp_y >> 3) & 0x1f;
Row2 = (Row1 + 1) & 0x1f;
// check boundaries
if (!((sp_y < 0) || ((sp_y & 0x01ff) < 0x00eb)))
{
*draw = 0;
}
if (size)
{
if (OAM_Row[Row1] + 1 >= OAM_RowMax)
*draw = 0;
if (OAM_Row[Row2] + 1 >= OAM_RowMax)
*draw = 0;
}
else
{
if (OAM_Row[Row1] >= OAM_RowMax)
{
*draw = 0;
}
}
// emulator fail-safe (unknown if this really exists)
if (sprite_count >= 128)
{
*draw = 0;
}
// SR = 0x80
if (*draw)
{
// Row tiles
if (size)
{
OAM_Row[Row1] += 2;
OAM_Row[Row2] += 2;
}
else
{
OAM_Row[Row1]++;
}
// yield OAM output
DSP4_WRITE_WORD(1);
// pack OAM data: x,y,name,attr
DSP4_WRITE_BYTE(sp_x & 0xff);
DSP4_WRITE_BYTE(sp_y & 0xff);
DSP4_WRITE_WORD(sp_attr);
sprite_count++;
// OAM: size,msb data
// save post-oam table data for future retrieval
OAM_attr[OAM_index] |= ((sp_x <0 || sp_x> 255) << OAM_bits);
OAM_bits++;
OAM_attr[OAM_index] |= (size << OAM_bits);
OAM_bits++;
// move to next byte in buffer
if (OAM_bits == 16)
{
OAM_bits = 0;
OAM_index++;
}
}
else if (stop)
{
// yield no OAM output
DSP4_WRITE_WORD(0);
}
}
//////////////////////////////////////////////////////////////
void DSP4_OP0D()
{
DSP4.waiting4command = FALSE;
// op flow control
switch (DSP4_Logic)
{
case 1:
goto resume1; break;
case 2:
goto resume2; break;
}
////////////////////////////////////////////////////
// process initial inputs
// sort inputs
world_y = DSP4_READ_DWORD();
poly_bottom[0][0] = DSP4_READ_WORD();
poly_top[0][0] = DSP4_READ_WORD();
poly_cx[1][0] = DSP4_READ_WORD();
viewport_bottom = DSP4_READ_WORD();
world_x = DSP4_READ_DWORD();
poly_cx[0][0] = DSP4_READ_WORD();
poly_ptr[0][0] = DSP4_READ_WORD();
world_yofs = DSP4_READ_WORD();
world_dy = DSP4_READ_DWORD();
world_dx = DSP4_READ_DWORD();
distance = DSP4_READ_WORD();
DSP4_READ_WORD(); // 0x0000
world_xenv = SEX78(DSP4_READ_WORD());
world_ddy = DSP4_READ_WORD();
world_ddx = DSP4_READ_WORD();
view_yofsenv = DSP4_READ_WORD();
// initial (x,y,offset) at starting raster line
view_x1 = (world_x + world_xenv) >> 16;
view_y1 = world_y >> 16;
view_xofs1 = world_x >> 16;
view_yofs1 = world_yofs;
// first raster line
poly_raster[0][0] = poly_bottom[0][0];
do
{
////////////////////////////////////////////////////
// process one iteration of projection
// perspective projection of world (x,y,scroll) points
// based on the current projection lines
view_x2 = ((world_x + world_xenv) >> 16) * distance >> 15;
view_y2 = (world_y >> 16) * distance >> 15;
view_xofs2 = view_x2;
view_yofs2 = (world_yofs * distance >> 15) + poly_bottom[0][0] - view_y2;
// 1. World x-location before transformation
// 2. Viewer x-position at the current
// 3. World y-location before perspective projection
// 4. Viewer y-position below the horizon
// 5. Number of raster lines drawn in this iteration
DSP4_CLEAR_OUT();
DSP4_WRITE_WORD((world_x + world_xenv) >> 16);
DSP4_WRITE_WORD(view_x2);
DSP4_WRITE_WORD(world_y >> 16);
DSP4_WRITE_WORD(view_y2);
//////////////////////////////////////////////////////////
// SR = 0x00
// determine # of raster lines used
segments = view_y1 - view_y2;
// prevent overdraw
if (view_y2 >= poly_raster[0][0])
segments = 0;
else
poly_raster[0][0] = view_y2;
// don't draw outside the window
if (view_y2 < poly_top[0][0])
{
segments = 0;
// flush remaining raster lines
if (view_y1 >= poly_top[0][0])
segments = view_y1 - poly_top[0][0];
}
// SR = 0x80
DSP4_WRITE_WORD(segments);
//////////////////////////////////////////////////////////
// scan next command if no SR check needed
if (segments)
{
int32 px_dx, py_dy;
int32 x_scroll, y_scroll;
// SR = 0x00
// linear interpolation (lerp) between projected points
px_dx = (view_xofs2 - view_xofs1) * DSP4_Inverse(segments) << 1;
py_dy = (view_yofs2 - view_yofs1) * DSP4_Inverse(segments) << 1;
// starting step values
x_scroll = SEX16(poly_cx[0][0] + view_xofs1);
y_scroll = SEX16(-viewport_bottom + view_yofs1 + view_yofsenv + poly_cx[1][0] - world_yofs);
// SR = 0x80
// rasterize line
for (lcv = 0; lcv < segments; lcv++)
{
// 1. HDMA memory pointer
// 2. vertical scroll offset ($210E)
// 3. horizontal scroll offset ($210D)
DSP4_WRITE_WORD(poly_ptr[0][0]);
DSP4_WRITE_WORD((y_scroll + 0x8000) >> 16);
DSP4_WRITE_WORD((x_scroll + 0x8000) >> 16);
// update memory address
poly_ptr[0][0] -= 4;
// update screen values
x_scroll += px_dx;
y_scroll += py_dy;
}
}
/////////////////////////////////////////////////////
// Post-update
// update new viewer (x,y,scroll) to last raster line drawn
view_x1 = view_x2;
view_y1 = view_y2;
view_xofs1 = view_xofs2;
view_yofs1 = view_yofs2;
// add deltas for projection lines
world_dx += SEX78(world_ddx);
world_dy += SEX78(world_ddy);
// update projection lines
world_x += (world_dx + world_xenv);
world_y += world_dy;
////////////////////////////////////////////////////
// command check
// scan next command
DSP4.in_count = 2;
DSP4_WAIT(1) resume1 :
// inspect input
distance = DSP4_READ_WORD();
// terminate op
if (distance == -0x8000)
break;
// already have 2 bytes in queue
DSP4.in_count = 6;
DSP4_WAIT(2) resume2 :
// inspect inputs
world_ddy = DSP4_READ_WORD();
world_ddx = DSP4_READ_WORD();
view_yofsenv = DSP4_READ_WORD();
// no envelope here
world_xenv = 0;
}
while (1);
DSP4.waiting4command = TRUE;
}
//////////////////////////////////////////////////////////////
void DSP4_OP0E()
{
int16 i;
OAM_RowMax = 16;
for (i = 0; i < 32; i++)
{
OAM_Row[i] = 0;
}
}
//////////////////////////////////////////////////////////////
void DSP4_OP0F()
{
DSP4.waiting4command = FALSE;
// op flow control
switch (DSP4_Logic)
{
case 1:
goto resume1; break;
case 2:
goto resume2; break;
case 3:
goto resume3; break;
case 4:
goto resume4; break;
}
////////////////////////////////////////////////////
// process initial inputs
// sort inputs
DSP4_READ_WORD(); // 0x0000
world_y = DSP4_READ_DWORD();
poly_bottom[0][0] = DSP4_READ_WORD();
poly_top[0][0] = DSP4_READ_WORD();
poly_cx[1][0] = DSP4_READ_WORD();
viewport_bottom = DSP4_READ_WORD();
world_x = DSP4_READ_DWORD();
poly_cx[0][0] = DSP4_READ_WORD();
poly_ptr[0][0] = DSP4_READ_WORD();
world_yofs = DSP4_READ_WORD();
world_dy = DSP4_READ_DWORD();
world_dx = DSP4_READ_DWORD();
distance = DSP4_READ_WORD();
DSP4_READ_WORD(); // 0x0000
world_xenv = DSP4_READ_DWORD();
world_ddy = DSP4_READ_WORD();
world_ddx = DSP4_READ_WORD();
view_yofsenv = DSP4_READ_WORD();
// initial (x,y,offset) at starting raster line
view_x1 = (world_x + world_xenv) >> 16;
view_y1 = world_y >> 16;
view_xofs1 = world_x >> 16;
view_yofs1 = world_yofs;
// first raster line
poly_raster[0][0] = poly_bottom[0][0];
do
{
////////////////////////////////////////////////////
// process one iteration of projection
// perspective projection of world (x,y,scroll) points
// based on the current projection lines
view_x2 = ((world_x + world_xenv) >> 16) * distance >> 15;
view_y2 = (world_y >> 16) * distance >> 15;
view_xofs2 = view_x2;
view_yofs2 = (world_yofs * distance >> 15) + poly_bottom[0][0] - view_y2;
// 1. World x-location before transformation
// 2. Viewer x-position at the next
// 3. World y-location before perspective projection
// 4. Viewer y-position below the horizon
// 5. Number of raster lines drawn in this iteration
DSP4_CLEAR_OUT();
DSP4_WRITE_WORD((world_x + world_xenv) >> 16);
DSP4_WRITE_WORD(view_x2);
DSP4_WRITE_WORD(world_y >> 16);
DSP4_WRITE_WORD(view_y2);
//////////////////////////////////////////////////////
// SR = 0x00
// determine # of raster lines used
segments = poly_raster[0][0] - view_y2;
// prevent overdraw
if (view_y2 >= poly_raster[0][0])
segments = 0;
else
poly_raster[0][0] = view_y2;
// don't draw outside the window
if (view_y2 < poly_top[0][0])
{
segments = 0;
// flush remaining raster lines
if (view_y1 >= poly_top[0][0])
segments = view_y1 - poly_top[0][0];
}
// SR = 0x80
DSP4_WRITE_WORD(segments);
//////////////////////////////////////////////////////
// scan next command if no SR check needed
if (segments)
{
int32 px_dx, py_dy;
int32 x_scroll, y_scroll;
for (lcv = 0; lcv < 4; lcv++)
{
// grab inputs
DSP4.in_count = 4;
DSP4_WAIT(1);
resume1 :
for (;;)
{
int16 distance;
int16 color, red, green, blue;
distance = DSP4_READ_WORD();
color = DSP4_READ_WORD();
// U1+B5+G5+R5
red = color & 0x1f;
green = (color >> 5) & 0x1f;
blue = (color >> 10) & 0x1f;
// dynamic lighting
red = (red * distance >> 15) & 0x1f;
green = (green * distance >> 15) & 0x1f;
blue = (blue * distance >> 15) & 0x1f;
color = red | (green << 5) | (blue << 10);
DSP4_CLEAR_OUT();
DSP4_WRITE_WORD(color);
break;
}
}
//////////////////////////////////////////////////////
// SR = 0x00
// linear interpolation (lerp) between projected points
px_dx = (view_xofs2 - view_xofs1) * DSP4_Inverse(segments) << 1;
py_dy = (view_yofs2 - view_yofs1) * DSP4_Inverse(segments) << 1;
// starting step values
x_scroll = SEX16(poly_cx[0][0] + view_xofs1);
y_scroll = SEX16(-viewport_bottom + view_yofs1 + view_yofsenv + poly_cx[1][0] - world_yofs);
// SR = 0x80
// rasterize line
for (lcv = 0; lcv < segments; lcv++)
{
// 1. HDMA memory pointer
// 2. vertical scroll offset ($210E)
// 3. horizontal scroll offset ($210D)
DSP4_WRITE_WORD(poly_ptr[0][0]);
DSP4_WRITE_WORD((y_scroll + 0x8000) >> 16);
DSP4_WRITE_WORD((x_scroll + 0x8000) >> 16);
// update memory address
poly_ptr[0][0] -= 4;
// update screen values
x_scroll += px_dx;
y_scroll += py_dy;
}
}
////////////////////////////////////////////////////
// Post-update
// update new viewer (x,y,scroll) to last raster line drawn
view_x1 = view_x2;
view_y1 = view_y2;
view_xofs1 = view_xofs2;
view_yofs1 = view_yofs2;
// add deltas for projection lines
world_dx += SEX78(world_ddx);
world_dy += SEX78(world_ddy);
// update projection lines
world_x += (world_dx + world_xenv);
world_y += world_dy;
////////////////////////////////////////////////////
// command check
// scan next command
DSP4.in_count = 2;
DSP4_WAIT(2) resume2 :
// check for termination
distance = DSP4_READ_WORD();
if (distance == -0x8000)
break;
if ((uint16) distance == 0x8001)
{
/*
(code)
308000 W: 01
308001 W: 80
308000 W: E4
308001 W: 0B
308000 W: 5C
308001 W: A0
308000 W: 38
308001 W: FD
(normal)
308000 W: 07
308001 W: 0B
308000 W: 00
308001 W: 00
308000 W: 00
308001 W: 01
308000 W: 00
308001 W: 00
*/
DSP4.in_count = 6;
DSP4_WAIT(3) resume3 : distance = DSP4_READ_WORD();
DSP4_READ_WORD();
DSP4_READ_WORD();
DSP4.in_count = 2;
DSP4_WAIT(2)
}
// already have 2 bytes in queue
DSP4.in_count = 6;
DSP4_WAIT(4) resume4 :
// inspect inputs
world_ddy = DSP4_READ_WORD();
world_ddx = DSP4_READ_WORD();
view_yofsenv = DSP4_READ_WORD();
// no envelope here
world_xenv = 0;
}
while (1);
// terminate op
DSP4.waiting4command = TRUE;
}
//////////////////////////////////////////////////////////////
void DSP4_OP10()
{
DSP4.waiting4command = FALSE;
// op flow control
switch (DSP4_Logic)
{
case 1:
goto resume1; break;
case 2:
goto resume2; break;
case 3:
goto resume3; break;
}
////////////////////////////////////////////////////
// sort inputs
DSP4_READ_WORD(); // 0x0000
world_y = DSP4_READ_DWORD();
poly_bottom[0][0] = DSP4_READ_WORD();
poly_top[0][0] = DSP4_READ_WORD();
poly_cx[1][0] = DSP4_READ_WORD();
viewport_bottom = DSP4_READ_WORD();
world_x = DSP4_READ_DWORD();
poly_cx[0][0] = DSP4_READ_WORD();
poly_ptr[0][0] = DSP4_READ_WORD();
world_yofs = DSP4_READ_WORD();
distance = DSP4_READ_WORD();
view_y2 = DSP4_READ_WORD();
view_dy = DSP4_READ_WORD() * distance >> 15;
view_x2 = DSP4_READ_WORD();
view_dx = DSP4_READ_WORD() * distance >> 15;
view_yofsenv = DSP4_READ_WORD();
// initial (x,y,offset) at starting raster line
view_x1 = world_x >> 16;
view_y1 = world_y >> 16;
view_xofs1 = view_x1;
view_yofs1 = world_yofs;
// first raster line
poly_raster[0][0] = poly_bottom[0][0];
do
{
////////////////////////////////////////////////////
// process one iteration of projection
// add shaping
view_x2 += view_dx;
view_y2 += view_dy;
// vertical scroll calculation
view_xofs2 = view_x2;
view_yofs2 = (world_yofs * distance >> 15) + poly_bottom[0][0] - view_y2;
// 1. Viewer x-position at the next
// 2. Viewer y-position below the horizon
// 3. Number of raster lines drawn in this iteration
DSP4_CLEAR_OUT();
DSP4_WRITE_WORD(view_x2);
DSP4_WRITE_WORD(view_y2);
//////////////////////////////////////////////////////
// SR = 0x00
// determine # of raster lines used
segments = view_y1 - view_y2;
// prevent overdraw
if (view_y2 >= poly_raster[0][0])
segments = 0;
else
poly_raster[0][0] = view_y2;
// don't draw outside the window
if (view_y2 < poly_top[0][0])
{
segments = 0;
// flush remaining raster lines
if (view_y1 >= poly_top[0][0])
segments = view_y1 - poly_top[0][0];
}
// SR = 0x80
DSP4_WRITE_WORD(segments);
//////////////////////////////////////////////////////
// scan next command if no SR check needed
if (segments)
{
for (lcv = 0; lcv < 4; lcv++)
{
// grab inputs
DSP4.in_count = 4;
DSP4_WAIT(1);
resume1 :
for (;;)
{
int16 distance;
int16 color, red, green, blue;
distance = DSP4_READ_WORD();
color = DSP4_READ_WORD();
// U1+B5+G5+R5
red = color & 0x1f;
green = (color >> 5) & 0x1f;
blue = (color >> 10) & 0x1f;
// dynamic lighting
red = (red * distance >> 15) & 0x1f;
green = (green * distance >> 15) & 0x1f;
blue = (blue * distance >> 15) & 0x1f;
color = red | (green << 5) | (blue << 10);
DSP4_CLEAR_OUT();
DSP4_WRITE_WORD(color);
break;
}
}
}
//////////////////////////////////////////////////////
// scan next command if no SR check needed
if (segments)
{
int32 px_dx, py_dy;
int32 x_scroll, y_scroll;
// SR = 0x00
// linear interpolation (lerp) between projected points
px_dx = (view_xofs2 - view_xofs1) * DSP4_Inverse(segments) << 1;
py_dy = (view_yofs2 - view_yofs1) * DSP4_Inverse(segments) << 1;
// starting step values
x_scroll = SEX16(poly_cx[0][0] + view_xofs1);
y_scroll = SEX16(-viewport_bottom + view_yofs1 + view_yofsenv + poly_cx[1][0] - world_yofs);
// SR = 0x80
// rasterize line
for (lcv = 0; lcv < segments; lcv++)
{
// 1. HDMA memory pointer
// 2. vertical scroll offset ($210E)
// 3. horizontal scroll offset ($210D)
DSP4_WRITE_WORD(poly_ptr[0][0]);
DSP4_WRITE_WORD((y_scroll + 0x8000) >> 16);
DSP4_WRITE_WORD((x_scroll + 0x8000) >> 16);
// update memory address
poly_ptr[0][0] -= 4;
// update screen values
x_scroll += px_dx;
y_scroll += py_dy;
}
}
/////////////////////////////////////////////////////
// Post-update
// update new viewer (x,y,scroll) to last raster line drawn
view_x1 = view_x2;
view_y1 = view_y2;
view_xofs1 = view_xofs2;
view_yofs1 = view_yofs2;
////////////////////////////////////////////////////
// command check
// scan next command
DSP4.in_count = 2;
DSP4_WAIT(2) resume2 :
// check for opcode termination
distance = DSP4_READ_WORD();
if (distance == -0x8000)
break;
// already have 2 bytes in queue
DSP4.in_count = 10;
DSP4_WAIT(3) resume3 :
// inspect inputs
view_y2 = DSP4_READ_WORD();
view_dy = DSP4_READ_WORD() * distance >> 15;
view_x2 = DSP4_READ_WORD();
view_dx = DSP4_READ_WORD() * distance >> 15;
}
while (1);
DSP4.waiting4command = TRUE;
}
//////////////////////////////////////////////////////////////
void DSP4_OP11(int16 A, int16 B, int16 C, int16 D, int16 *M)
{
// 0x155 = 341 = Horizontal Width of the Screen
*M = ((A * 0x0155 >> 2) & 0xf000) |
((B * 0x0155 >> 6) & 0x0f00) |
((C * 0x0155 >> 10) & 0x00f0) |
((D * 0x0155 >> 14) & 0x000f);
}
/////////////////////////////////////////////////////////////
//Processing Code
/////////////////////////////////////////////////////////////
uint8 dsp4_byte;
uint16 dsp4_address;
void InitDSP4()
{
memset(&DSP4, 0, sizeof(DSP4));
DSP4.waiting4command = TRUE;
}
void DSP4SetByte()
{
if ((dsp4_address & 0xf000) == 0x6000 || (dsp4_address >= 0x8000 && dsp4_address < 0xc000))
{
// clear pending read
if (DSP4.out_index < DSP4.out_count)
{
DSP4.out_index++;
return;
}
if (DSP4.waiting4command)
{
if (DSP4.half_command)
{
DSP4.command |= (dsp4_byte << 8);
DSP4.in_index = 0;
DSP4.waiting4command = FALSE;
DSP4.half_command = FALSE;
DSP4.out_count = 0;
DSP4.out_index = 0;
DSP4_Logic = 0;
switch (DSP4.command)
{
case 0x0000:
DSP4.in_count = 4; break;
case 0x0001:
DSP4.in_count = 44; break;
case 0x0003:
DSP4.in_count = 0; break;
case 0x0005:
DSP4.in_count = 0; break;
case 0x0006:
DSP4.in_count = 0; break;
case 0x0007:
DSP4.in_count = 34; break;
case 0x0008:
DSP4.in_count = 90; break;
case 0x0009:
DSP4.in_count = 14; break;
case 0x000a:
DSP4.in_count = 6; break;
case 0x000b:
DSP4.in_count = 6; break;
case 0x000d:
DSP4.in_count = 42; break;
case 0x000e:
DSP4.in_count = 0; break;
case 0x000f:
DSP4.in_count = 46; break;
case 0x0010:
DSP4.in_count = 36; break;
case 0x0011:
DSP4.in_count = 8; break;
default:
DSP4.waiting4command = TRUE;
break;
}
}
else
{
DSP4.command = dsp4_byte;
DSP4.half_command = TRUE;
}
}
else
{
DSP4.parameters[DSP4.in_index] = dsp4_byte;
DSP4.in_index++;
}
if (!DSP4.waiting4command && DSP4.in_count == DSP4.in_index)
{
// Actually execute the command
DSP4.waiting4command = TRUE;
DSP4.out_index = 0;
DSP4.in_index = 0;
printf("DSP4 Command: %u\n", DSP4.command);
switch (DSP4.command)
{
// 16-bit multiplication
case 0x0000:
{
int16 multiplier, multiplicand;
int32 product;
multiplier = DSP4_READ_WORD();
multiplicand = DSP4_READ_WORD();
DSP4_Multiply(multiplicand, multiplier, &product);
DSP4_CLEAR_OUT();
DSP4_WRITE_WORD(product);
DSP4_WRITE_WORD(product >> 16);
}
break;
// single-player track projection
case 0x0001:
DSP4_OP01(); break;
// single-player selection
case 0x0003:
DSP4_OP03(); break;
// clear OAM
case 0x0005:
DSP4_OP05(); break;
// transfer OAM
case 0x0006:
DSP4_OP06(); break;
// single-player track fork projection
case 0x0007:
DSP4_OP07(); break;
// solid polygon projection
case 0x0008:
DSP4_OP08(); break;
// sprite projection
case 0x0009:
DSP4_OP09(); break;
// unknown
case 0x000A:
{
int16 in1a = DSP4_READ_WORD();
int16 in2a = DSP4_READ_WORD();
int16 in3a = DSP4_READ_WORD();
int16 out1a, out2a, out3a, out4a;
//DSP4_OP0A(in2a, &out2a, &out1a, &out4a, &out3a);
DSP4_OP0A(in2a, &out1a, &out2a, &out3a, &out4a);
DSP4_CLEAR_OUT();
DSP4_WRITE_WORD(out1a);
DSP4_WRITE_WORD(out2a);
DSP4_WRITE_WORD(out3a);
DSP4_WRITE_WORD(out4a);
}
break;
// set OAM
case 0x000B:
{
int16 sp_x = DSP4_READ_WORD();
int16 sp_y = DSP4_READ_WORD();
int16 sp_attr = DSP4_READ_WORD();
bool8 draw = 1;
DSP4_CLEAR_OUT();
DSP4_OP0B(&draw, sp_x, sp_y, sp_attr, 0, 1);
}
break;
// multi-player track projection
case 0x000D:
DSP4_OP0D(); break;
// multi-player selection
case 0x000E:
DSP4_OP0E(); break;
// single-player track projection with lighting
case 0x000F:
DSP4_OP0F(); break;
// single-player track fork projection with lighting
case 0x0010:
DSP4_OP10(); break;
// unknown: horizontal mapping command
case 0x0011:
{
int16 a, b, c, d, m;
d = DSP4_READ_WORD();
c = DSP4_READ_WORD();
b = DSP4_READ_WORD();
a = DSP4_READ_WORD();
DSP4_OP11(a, b, c, d, &m);
DSP4_CLEAR_OUT();
DSP4_WRITE_WORD(m);
break;
}
default:
break;
}
}
}
}
void DSP4GetByte()
{
if ((dsp4_address & 0xf000) == 0x6000 || (dsp4_address >= 0x8000 && dsp4_address < 0xc000))
{
if (DSP4.out_count)
{
dsp4_byte = (uint8) DSP4.output[DSP4.out_index&0x1FF];
DSP4.out_index++;
if (DSP4.out_count == DSP4.out_index)
DSP4.out_count = 0;
}
else
{
dsp4_byte = 0xff;
}
}
else
{
dsp4_byte = 0x80;
}
}